Introduction to CostEffectiveness Analysis

Brennan Spiegel, MD, MSHS

VA Greater Los Angeles Healthcare System David Geffen School of Medicine at UCLA CURE Digestive Diseases Research Center UCLA/VA Center for Outcomes Research and Education (CORE)

Objectives

- Define types of health-economic models
- Introduce decision analysis
- Introduce utilities and QALYs
- Review solution to "competing choice" problem
- Examine role of sensitivity analysis
- Discuss shortcomings of cost-effectiveness analysis
- Introduce budget impact models as alternative

Taxonomy of Health-Economic Analyses

Health Economic Models

Type of Model	Numerator	Denominator	Example
CEA	$\$$	Health Outcome	Cost per ulcer bleed prevented
CUA	$\$$	QALY	Cost per QALY
CBA	$\$$	$\$$	Cost per willingness-to-pay (WTP) for IBS symptom relief
CMA	$\$$	None	Overall cost of using cox-2 inhibitor instead of ibuprofen
BIM	$\$$	None	Per member per month (PMPM) cost of screening for varices in cirrhosis

Example Questions

- Is it cost-effective to screen for esophageal varices in cirrhosis?
- What is the cost-utility of of using cox-2 inhibitors instead of non-selective NSAIDs in arthritis?
- How sensitive and specific must a hypothetical pancreatic cancer tumor marker be in order for it to be cost-effective?
- What is the incremental PMPM cost of using rifaximin instead of lactulose for hepatic encephalopathy?

Guiding Principles of Health Economics

- Resources are limited
- If you spend money in one place, then you can't spend it in another
- Aim to provide the most good to most people
- Litmus test: "Is the juice worth the squeeze"
- Dying younger is cheaper
- "Rule of rescue" can throw off a perfectly rationale argument
- Computers are amoral. Humans are not.

When Does Money Matter?

- When budgets are tight (e.g. always!)
- When competing strategies are equally effective (principle of CMA)
- When one strategy is significantly more effective than another, but also more expensive
- When people live a long time with a condition
- When a condition is highly prevalent

Ways to Save Money

- Don't do things that are ineffective \& expensive
- Skip low yield steps or cut corners
- Use lower cost stuff, even if it's less effective
- Use lower cost people, even if it's less effective
- Downgrade to a less expensive settings
- Do nothing at all

Decision Analysis Example: Irritable Bowel Syndrome

- 45 yo with irritable bowel syndrome
- Symptoms severe
- Co-morbid depression

Which therapy to start with?

Suppose there are two factors that drive the decision

Will the symptoms improve?

Will there be side-effects?

Software Depiction

Defining the Outcomes

	No Side Effects	Side Effects Occur
Symptoms Improve		
Symptoms Persist		

Defining the Outcome: Utilities

Direct Rating Scale

Indirect Rating: Time Trade-Off

Indirect Rating:
 Time Trade-Off

Indirect Rating: Time Trade-Off

Indirect Rating:
 Time Trade-Off

Calculating the Time Trade-Off Utility

$$
\text { Utility }=\frac{\text { time willing to spend in perfect health }}{\text { total remaining lifespan }}
$$

$$
\text { Utility }=\frac{35 \text { years }}{40 \text { years }}=0.87
$$

Other Utility Elicitation Techniques

- Standard gamble
- Multi-attribute scales (EuroQol, HUI)
- SF-36 conversions
- Conjoint analysis

Quality-Adjusted Life-Years

- QALY is a year of life, adjusted for the quality in which it is lived
- One year lived with utility of $0.87=$ 87\% of year lived in perfect health
- 87% of year lived in perfect health $=$ 0.87 QALY

Quality-Adjusted Life-Years

Quality-Adjusted Life-Years

"Rolling Back" the Tree

Calculate the expected value of each arm

Summing the Arms

. 95

Question

SSRI provides 0.03 more QALY vs.
"usual care." That's 10.95 additional quality adjusted days per year.

So, "is the juice worth the squeeze?"

$$
\begin{gathered}
\hline \text { Juice }=\text { QALYs } \\
\text { Squeeze }=\$ \\
\hline
\end{gathered}
$$

Costs

- Cost estimates depends upon perspective
- Third party payer perspective
- Medicare reimbursement
- Average wholesale drug prices
- Patient perspective
- Days lost from work
- Transportation costs for doctor visits
- Societal perspective
- Includes all up-front, induced, and averted costs

Sequence of Costs

- Initial: Costs initially incurred upon initiation of a strategy
- Induced: Costs resulting from an intervention
- Transition: Costs associated with transitioning between health states
- Averted: Costs associated with events avoided by intervention
- Terminal: Costs of death

Some Issues with Costs

- Cost vs. charges
- Comprehensiveness of resources included in the model
- Discounting future costs
- Updating old costs using medical services component of CPI
- Problems with AWP

Example Cost Estimates

GI ReSOUrCe	CoSt
Cost per tablet of SSRI	$\$ 3.00$
Cost per day of Metamucil	$\$ 0.50$
Gl office visit	$\$ 52$
Colonoscopy	$\$ 624$
Upper endoscopy	$\$ 624$
Flexible sigmoidoscopy	$\$ 125$
ERCP	$\$ 1213$
Abdominal XR / Upper GI Series / BE	$\$ 541$
Abdominal ultrasound	$\$ 541$
Elective abdominal surgery	$\$ 13,531$

Obtaining Cost Estimates

- Outpatient services
- AMA CPT codes and costs (http:/lwww.ama-assn.orgD)
- Inpatient services
- DRG codes and costs (http:/lwww.ahrg.gov/data/hcupl)

Cost-Effectiveness

$\longrightarrow \$ 850 /$ year

\longrightarrow \$1350 / year

Cost-Effectiveness

Cost-Effectiveness

Cost-Utility Results

Incremental Cost Effectiveness

Δ Cost
 ICER =
 Δ Effect

Another Example

Question

How do you know if $\$ 275,000$ per QALY is "too much"?

Anyone who tells you there is an easy answer to this is mistaken!

Question

$$
\begin{aligned}
& \text { Why are we using } \\
& \text { QALYs, anyway? }
\end{aligned}
$$

"League Table"

COST DESCRIPTION	\$ I OUTCOME
"PPI Test" in acid reflux	$\$ 10,160$
Screening for Barrett's esophagus	$\$ 10,440$
Screening for celiac sprue in IBS	$\$ 11,000$
Angioplasty in acute MI	$\$ 13,100$
CMV prophylaxis in AIDS	$\$ 22,000$
Screening for varices in cirrhosis	$\$ 175,833$
Celebrex for chronic arthritis	$\$ 275,000$
Intravenous PPI therapy for ulcer bleed	$\$ 708,735$

CVM: Moore et al. J AIDS Hum Retro 1997
Varices: Spiegel et al. Hepatology 2004
Celebrex: Spiegel et al. Ann Int Med 2004 IV PPI: Spiegel et al. Clin Gastro Hep 2006

Another Example

Another Competing Choice Example

Effectiveness

(QALYs)

Handling Uncertainty

- Precise probability estimates may not be valid
- Cost estimates may vary between different settings
- Solution: Sensitivity Analysis

One-Way Sensitivity Analysis: Cost of Paroxetine

Another Example

Another Example

Sensitivity analysis on PPI cost

Sensitivity analysis on PPI cost

(QALYs)

Sensitivity analysis on PPI cost

Monte Carlo Analysis: Paroxetine vs Usual Care

CEAs Don't Tell the Whole Story

Limitations of CEAs:

- Difficult to interpret ICERs - sometimes more academic than practical
- Does not account for underlying prevalence of disease
- Less useful when effectiveness is similar in competing strategies
- Does not address budget impact

Focusing on Effectiveness: Screening for Varices in Cirrhosis

Importance of Considering Budget Impact

1 Endoscopy

30 Bicycle Helmets for Kids

Importance of Considering Budget Impact

1 Endoscopy

Importance of Considering Budget Impact

1 Endoscopy

300 Bottles of Aspirin

Budget Impact Question:

In a managed care population, what is the per-member per-month (PMPM) cost of paying for endoscopic screening with EGD versus using empiric medical therapy alone?

Budget Impact Results

Strategy	1-Year Cost per Cirrhotic	PMPM	IPMPM
No Screening	$\$ 3,824$	$\$ 1.59$	--
Screening	$\$ 4,432$	$\$ 1.85$	$\$ 0.26$

* Assuming 0.5\% prevalence of cirrhosis in MCO of 1,000,000 covered lives

PMPM League Table

Intervention	PMPM
Tegaserod for irritable bowel syndrome	$\$ 0.01$
Sildenafil for erectile dysfunction	$\$ 0.18$
Screening for varices in cirrhosis	$\$ 0.26$
Intravenous PPI therapy for ulcer bleeding	$\$ 2.68$
Rifaximin for hepatic encephalopathy	$\$ 3.41$

IBS Example (Again)

$\longrightarrow \$ 850 /$ year

$\longrightarrow \$ 1350 /$ year

BIM Calculations

If we assume that a hypothetical MCO has 1,000,000 covered lives, and that the prevalence of IBS is 10\%, then:

$$
\text { PMPM }_{\text {Usual }}=\frac{(\$ 850 / 12 \text { months }) \times(1,000,000 \times 0.1)}{1,000,000}=\$ 7.08
$$

IPMPM = \$11.25-\$7.08 = \$4.17

BIM Spreadsheet

IBS Budget Impact Model

	$1-Y r$ Cost (per patient)	PPPM	IPPPM		PMPM	IPMPM SSRI vs. Usual
Usual Care	$\$ 850$	$\$ 70.83$	--	$\$ 7.08$.	
SSRI	$\$ 1,350$	$\$ 112.50$	$\$ 41.67$	$\$ 11.25$	$\$ 4.17$	

>> KEY VARIABLES CONTROL PANEL <<

Covered Lives in MCO (dropdown menu)	$\mathbf{1 , 0 0 0 , 0 0 0}$

Percent with IBS (dropdown menu) 1,000,000
Total IBS (total lives \times prop with HE) 100,000

Changing IBS Prevalence

Take Home Points

- Most health economic analyses are based on underlying decision model
- Good models must be comprehensive in competitors and scope
- We use QALYs as an "exchange currency" to compare strategies across medicine
- Interpret ICERs with league table
- CEAs don't account for prevalance, but BIMs do

