Introduction to Cost- Effectiveness Analysis

Brennan Spiegel, MD, MSHS

VA Greater Los Angeles Healthcare System
David Geffen School of Medicine at UCLA
CURE Digestive Diseases Research Center
UCLAVA Center for Outcomes Research and Education (CORE)

Objectives

- Define types of health-economic models
- Introduce decision analysis
- Introduce utilities and QALYs
- Review solution to "competing choice" problem
- Examine role of sensitivity analysis
- Discuss shortcomings of cost-effectiveness analysis
 - Introduce budget impact models as alternative

Health Economic Models						
Type of Model	Numerator	Denominator	Example			
CEA	\$	Health Outcome	Cost per ulcer bleed prevented			
CUA	\$	QALY	Cost per QALY			
СВА	\$	\$	Cost per willingness-to-pay (WTP) for IBS symptom relief			
CMA	\$	None	Overall cost of using cox-2 inhibitor instead of ibuprofen			
ВІМ	\$	None	Per member per month (PMPM) cost of screening for varices in cirrhosis			

Example Questions

- Is it cost-effective to screen for esophageal varices in cirrhosis?
- What is the cost-utility of of using cox-2 inhibitors instead of non-selective NSAIDs in arthritis?
- How sensitive and specific must a hypothetical pancreatic cancer tumor marker be in order for it to be cost-effective?
- What is the incremental PMPM cost of using rifaximin instead of lactulose for hepatic encephalopathy?

Guiding Principles of Health Economics

- Resources are limited
- If you spend money in one place, then you can't spend it in another
- Aim to provide the most good to most people
- Litmus test: "Is the juice worth the squeeze"
- Dying younger is cheaper
- "Rule of rescue" can throw off a perfectly rationale argument
 - Computers are amoral. Humans are not.

When Does Money Matter?

- When budgets are tight (e.g. always!)
- When competing strategies are equally effective (principle of CMA)
- When one strategy is significantly more effective than another, but also more expensive
- When people live a long time with a condition
- When a condition is highly prevalent

Ways to Save Money

- Don't do things that are ineffective & expensive
- Skip low yield steps or cut corners
- Use lower cost stuff, even if it's less effective
- Use lower cost people, even if it's less effective
- Downgrade to a less expensive settings
- Do nothing at all

Decision Analysis Example: Irritable Bowel Syndrome

- 45 yo with irritable bowel syndrome
- Symptoms severe
- Co-morbid depression

Defining the Outcomes No Side Effects Occur Symptoms Improve Symptoms Persist Occur Symptoms Persist Occur

Calculating the Time Trade-Off Utility

Utility =
$$\frac{\text{time willing to spend in perfect health}}{\text{total remaining lifespan}}$$

Utility =
$$\frac{35 \text{ years}}{40 \text{ years}} = \frac{0.87}{}$$

Other Utility Elicitation Techniques

- Standard gamble
- Multi-attribute scales (EuroQol, HUI)
- SF-36 conversions
- Conjoint analysis

Quality-Adjusted Life-Years

- QALY is a year of life, adjusted for the quality in which it is lived
- One year lived with utility of 0.87 = 87% of year lived in perfect health
- 87% of year lived in perfect health = 0.87 QALY

Question

SSRI provides 0.03 more QALY vs. "usual care." That's 10.95 additional quality adjusted days per year.

So, "is the juice worth the squeeze?"

Juice = QALYs Squeeze = \$

Costs

- Cost estimates depends upon perspective
 - Third party payer perspective
 - Medicare reimbursement
 - Average wholesale drug prices
 - Patient perspective
 - Days lost from work
 - Transportation costs for doctor visits
 - Societal perspective
 - Includes all up-front, induced, and averted costs

Sequence of Costs

- Initial: Costs initially incurred upon initiation of a strategy
- Induced: Costs resulting from an intervention
- Transition: Costs associated with transitioning between health states
- Averted: Costs associated with events avoided by intervention
- Terminal: Costs of death

Some Issues with Costs

- Cost vs. charges
- Comprehensiveness of resources included in the model
- Discounting future costs
- Updating old costs using medical services component of CPI
- Problems with AWP

Example Cost Estimates

GI Resource	Cost
Cost per tablet of SSRI	\$3.00
Cost per day of Metamucil	\$0.50
GI office visit	\$52
Colonoscopy	\$624
Upper endoscopy	\$624
Flexible sigmoidoscopy	\$125
ERCP	\$1213
Abdominal XR / Upper GI Series / BE	\$541
Abdominal ultrasound	\$541
Elective abdominal surgery	\$13,531

Obtaining Cost Estimates

- Outpatient services
 - AMA CPT codes and costs (http://www.ama-assn.org/)
- Inpatient services
 - DRG codes and costs(http://www.ahrq.gov/data/hcup/)

Incremental Cost Effectiveness

ICER =
$$\frac{\Delta \text{ Cost}}{\Delta \text{ Effect}}$$

Question

How do you know if \$275,000 per QALY is "too much"?

Anyone who tells you there is an easy answer to this is mistaken!

Question

Why are we using QALYs, anyway?

"League Table"

COST DESCRIPTION	\$/OUTCOME
"PPI Test" in acid reflux	\$10,160
Screening for Barrett's esophagus	\$10,440
Screening for celiac sprue in IBS	\$11,000
Angioplasty in acute MI	\$13,100
CMV prophylaxis in AIDS	\$22,000
Screening for varices in cirrhosis	\$175,833
Celebrex for chronic arthritis	\$275,000
Intravenous PPI therapy for ulcer bleed	\$708,735

PPI Test: Ofman et al. *APT*Barrett's: Inadomi et al. *Ann Int Med*Sprue: Spiegel et al. *Gastroenterol*Angioplasty: Lieu et al. *JACC* CVM: Moore et al. *J AIDS Hum Retro*Varices: Spiegel et al. *Hepatology*Celebrex: Spiegel et al. *Ann Int Med*IV PPI: Spiegel et al. *Clin Gastro Hep*

Handling Uncertainty

- Precise probability estimates may not be valid
- Cost estimates may vary between different settings
- Solution: Sensitivity Analysis

CEAs Don't Tell the Whole Story

Limitations of CEAs:

- Difficult to interpret ICERs sometimes more academic than practical
- Does not account for underlying prevalence of disease
- Less useful when effectiveness is similar in competing strategies
- Does not address budget impact

Budget Impact Question:

In a managed care population, what is the per-member per-month (PMPM) cost of paying for endoscopic screening with <u>EGD</u> versus using empiric medical therapy alone?

Budget Impact Results

Strategy	1-Year Cost per Cirrhotic	PMPM	IPMPM
No Screening	\$3,824	\$1.59	
Screening	\$4,432	\$1.85	\$0.26

* Assuming 0.5% prevalence of cirrhosis in MCO of 1,000,000 covered lives

Spiegel et al. Gastrointest Endo 2007

PMPM League Table

Intervention	PMPM
Tegaserod for irritable bowel syndrome	\$0.01
Sildenafil for erectile dysfunction	\$0.18
Screening for varices in cirrhosis	\$0.26
Intravenous PPI therapy for ulcer bleeding	\$2.68
Rifaximin for hepatic encephalopathy	\$3.41

Bloom et al. Am J Man Care 2005;11:S27 Cook et al. J Man Care Pharm 2005;11:674 Huang et al. Aliment Pharm Ther 2007;27:1147 Spiegel et al. Clin Gastro Hep 2006;4:988

Take Home Points

- Most health economic analyses are based on underlying decision model
- Good models must be comprehensive in competitors and scope
- We use QALYs as an "exchange currency" to compare strategies across medicine
- Interpret ICERs with league table
- CEAs don't account for prevalance, but BIMs do